
SANDIA REPORT
SAND2005-6520
Unlimited Release
Printed June 2005

Analysis and Algorithms for Using
Markov Processes in Systems Studies

Paul T. Boggs
Computational Science and Mathematics Research Department
Sandia National Laboratories
Livermore, CA 94551

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

DE
PA

RTMENT OF ENERGY

•
 •
U
N

ITED

STATES OF AM

ERI
C

A

2

SAND2005-6520xx
Unlimited Release
Printed June 2005

Analysis and Algorithms for Using Markov
Processes in Systems Studies

Paul T. Boggs
Computational Science and Mathematics Research Department

Sandia National Laboratories
Livermore, CA 94550
ptboggs@sandia.gov

Abstract

A Markov process model has been used for the DART systems analysis study.
The basic design through analysis process is not immediately describable as a Markov
process, but we show how a true Markov process can be derived and analyzed. We also
show how sensitivities of the model with respect to the input values can be computed
efficiently. This is useful in understanding how the results of this model can be used
to determine strategies for investment that will improve the design through analysis
process.

3

Acknowledgments

It is a pleasure to thank several of my colleagues for their help in carrying out this work.
First, I would like to thank Mike Hardwick and Robert Clay for their discussions that led to
the creation of the DART model. They were instrumental in creating a reasonably simple,
but sufficient model that formed the basis for the creation of the Markov process. Next,
I would like to thank Edward Walsh for his help in creating the overall package in which
my software resides. Edward helped considerably in debugging my code and in getting it
properly connected to his classes. I would also like to thank Vicki Howle for several useful
conversations about the tree representation that led to the general algorithm of section 4 and
Kevin Long and Steve Margolis for some general discussions about stochastic processes.
Finally, I would like to thank Richard Byrd (on sabbatical leave from the University of
Colorado) for his help in computing the sensitivities described in section 5.

4

Contents
1 Introduction . 7
2 The Basics of Markov Processes . 8
3 Creating a Markov Process from the DART Model . 10
4 Creating a Markov Process from a General Model . 12
5 Sensitivities . 15
6 Software . 17
References . 19

Figures
1 A standard Markov process allowing only one forward transition, but arbi-

trary backward transitions. If the transition probabilities change on subse-
quent passes through a state, this will no longer be a valid Markov process. 11

2 A Markov process derived from a model where transition probabilities
change. Note that the nonabsorbing states are replicated to achieve a larger,
but valid Markov process. 11

3 Transition matrix for first pass . 12
4 Transition matrix for all later passes . 12

5

6

Analysis and Algorithms for Using
Markov Processes in Systems

Studies

1 Introduction

Markov processes arise in many applications and are described in numerous books and
papers on stochastic processes and operations research (see e.g., [3]. Basically, a Markov
process consists of a finite number of states. If the process is in a given state, then at the
completion of the work associated with that state the process transitions to another state.
The particular state to which it transfers is determined by a fixed “transition matrix,” say
T , where the element Ti, j gives the probability of transferring from state i to state j.

A particularly useful special case is a Markov process that has one or more “absorbing
states.” These are defined to be states that, once entered, are never left, i.e., if state i is
an absorbing state then Ti, j = 0 for i 6= j and Ti,i = 1. Well known methods exist that can
compute the expected number of visits to each state before an absorbing state is entered.
This model can be very useful in analyzing processes to determine which states are entered
most often, how much time is spent in each state, and what the effects of investments
in the process that change the transition probabilities would be. For example, if a state
that is entered late in the process has a significant probability of returning to a very early
state, then investing in changes that reduce the likelihood of such a transition may have a
profound effect on the overall expected time through the process. Of course, the Markov
process analysis cannot tell a manager exactly where to make such an investment since
each process is different in that what causes the changes the the transition probabilities is
not apparent in the model.

The project that motivated this study is the Sandia Design through Analysis Realization
Team (DART) analysis activity that is attempting to improve this process (see Hardwick,
et al. [2]). It was observed that the process could be described in ten steps and that, at
the conclusion of each step, there was a probability of going to the next step as well as the
probability of going back one or more steps. Of course, not all D–through–A projects used
all ten steps, i.e., steps may be skipped, and that in going back to a previously entered state
the transition probabilities would most likely change. The idea is that the first pass through
a state, say the meshing part, might take two weeks and have a fairly high probability
of going back to a design state. If the meshing state is entered a second time, it is most
likely because a modification to only part of the mesh is required and, on average, say, one
week will be spent and the transition probabilities to go forward rather than back would be
greater. Since the probabilities change, this process in not a Markov process.

We need to be clear about the manner in which the times and the transition probabilities
in the DART model change. We mean that for the first pass through any state, there is an

7

expected time and a set of transition probabilities. On the second pass, there is a (possibly)
different expected time and set of transition probabilities. We allow this to continue, but
only for a fixed number of passes, say p. In the pth and all subsequent passes through
any state, there is an expected time and set of transition probabilities that remain fixed
thereafter. The DART analysis team did not believe that there was sufficient data to warrant
a model where p was greater than 2. Thus the DART model has only two sets of expected
times and two sets of transition probabilities.

In this paper, we discuss a strategy for creating a true Markov process from the model
described above. First we provide (in section 2) the essential background on Markov pro-
cesses that provides the basis for our analysis. Then, in section 3, we show how to create a
Markov process from the DART model in a simple case. This is included for completeness
since this was first considered to be sufficient for the analysis. In section 4, we show how
to create the Markov process for a much more general case, which, as it turns out, is more
efficient even for the special case of section 3. In section 5 we turn to the question of sen-
sitivities and show how to compute the sensitivity of the total expected time with respect to
both the transition probabilities and the expected times for each state. The case of sensitiv-
ities with respect to transition probabilities has some delicate features that require special
consideration. Finally, in section 6, we discuss the implementation of these procedures in
Java so that they are easily used in a code that creates a GUI for the analysts to use.

2 The Basics of Markov Processes

To make this report more self-contained, we include in this section a brief review of the
basic results on Markov processes that are needed for the analyses that were used in [2].
This also serves to set the notation for subsequent sections.

As noted in the introduction, a Markov process consists of a finite number of states
and a transition matrix that gives the probability of going from one state to another. To be
specific, let the states be denoted by

si, i = 1, . . . ,N,

where N is the number of states in the system. Let T ∈ R N×N be the transition matrix
and recall that Ti, j is the transition probability from si to s j. Since probabilities must be
nonnegative and some transition must be made in si, it follows that

N
∑
j=1

Ti, j = 1 for i = 1, . . . ,N.

That is, all of the row sums of T must be one. Such a matrix is called a “stochastic matrix.”

8

If we let y0 ∈ R N be a vector with a one in the first position and zero in the other
positions, we can interpret it as the initial state of the process, i.e., there is a 100% chance
that the process is in s1 at the beginning. It follows that for

y1 = T Ty0,

where superscript T means “transpose,” the kth element of y1 is the probability of being in
sk after one step of the process. In general, for

yp = T Typ−1 = (T T)py0,

it follows that the kth element of yp is the probability of being in sk after p steps of the
process.

Recall that a Markov process has an absorbing state, say sa, if Ta,a = 1. If a process
is a Markov process with one or more absorbing states, we can easily reorder the states so
that all of the absorbing states are at the end of the list of states. We can then partition T
as follows:

T =

[

S R
0 I

]

,

where S are the transitions among the nonabsorbing states, R are the transitions from the
nonabsorbing states to the absorbing states, and I is the identity matrix.

As above, let w0 ∈ R N−Na , where Na is the number of absorbing states and let w0 have
a one in the first position and zeros elsewhere. This can be interpreted again as starting
in s1. We are interested in the number of times that each state will be visited before the
process enters an absorbing state. Let

wp = (ST)pw0.

Since the kth element of wp is the probability of being in sk after p steps of the process, we
interpret the kth element of vp, where

vp =
p

∑
i=0

wi, (2.1)

as the expected number of visits to sk given that we started in s1. (Note that the summation
starts at 0 so that the expected number of visits to s1 is at least one. We can rewrite (2.1) as

vp =
[

I +(ST)+(ST)2 + · · ·+(ST)p
]

w0.

9

It can be proved that

lim
p→∞

[

I +(ST)+(ST)2 + · · ·+(ST)p
]

= (I −ST)−1.

(This is only true under certain conditions, e.g., that all of the eigenvalues of S are less than
1, which they are in this case.) Let

F = (I −ST).

Then the expected number of visits to each state given that we start in s1 is given by the
elements of the vector

v ≡ v∞ = F−1w0.

Finally, if the time that it takes to complete the work in si is denoted by ti then it follows
that the expected time for the process to enter an absorbing state is given by

T = vTt, (2.2)

where t is the vector whose ith element is ti. This is the quantity that is of interest in the
DART application.

3 Creating a Markov Process from the DART Model

To understand the procedure for creating a Markov process from the DART model, we first
illustrate with a simple example. Assume that the DART process consists of three states
and that we append a fourth state, the “done” state, that is an absorbing state. Assume also,
as in section 1, that we only have two sets of times and transition probabilities associated
with each state. For a standard Markov process, we can illustrate the process as in figure
1. There are fixed transition probabilities associated with each arrow in the figure. In the
DART model, however, the probabilities change after the first pass, so we must modify this
figure. Our procedure is based on replicating the states to take into account the changing
probabilities. Note that in figure 1 each state has a probability of going forward only one
step and a probability of going back to each preceding state. This is, in fact, what was
assumed for the first DART model. In figure 2 we show how to create a Markov process that
handles this case. In figure 2 the first row corresponds to the first pass data; all subsequent
rows correspond to the second pass data. Note that the transition to the first occurrence of
s3 can occur from either the first pass through s2 in the first row, or the second pass through
s2 in the second row. After that, any transition to s3 must be to a second pass version in rows

10

s s s2 431s

absorbing

Figure 1. A standard Markov process allowing only one for-
ward transition, but arbitrary backward transitions. If the transition
probabilities change on subsequent passes through a state, this will
no longer be a valid Markov process.

1s s 2 s3

1s

1s

s 2

s 2

s3

s3

s 4

pass 1 pass 1 pass 1

pass 2 pass 2 pass 2

pass 2 pass 2 pass 2

absorbing

Figure 2. A Markov process derived from a model where tran-
sition probabilities change. Note that the nonabsorbing states are
replicated to achieve a larger, but valid Markov process.

2,3, One can now observe that, at worst, we will need to add two rows, so there will
be 9 nonabsorbing states and one absorbing state. A careful consideration shows that this
will not work if a state is skipped on the first pass and that it is hard to generalize if there
are more than two passes. Note also that not all of the replicated states are actually needed,
e.g., state s3 in the second row, but they are included for simplicity of the construction of
the Markov process.

If the original process has N states and a “done” state is added, we will have to add N
rows giving (N2 + 1) states in the final Markov process. Since the DART model has only
10 states, we will have to solve linear systems of size 100, which is simple to compute. As
noted above, there are replicated states that are unnecessary and we could remove them.
Doing so, however, is more work than just ignoring them. The software for solving the
system of equations is explained later.

11









0 x 0 x
x 0 x 0
0 x 0 x
0 0 0 x









Figure 3. Transition matrix for first pass









0 x x x
x 0 0 x
0 x 0 x
0 0 0 x









Figure 4. Transition matrix for all later
passes

The first version of the DART tool was used by a set of analysts. At least two of
these analysts violated our assumption by either skipping states or by having transitions
to more than one forward state. This is in line with the experience of many modelers and
programmers that users often find ways to use the models or codes that developers never
considered. On the positive side, however, this led to the development of a better and more
general strategy that is described next.

4 Creating a Markov Process from a General Model

As noted in the previous section, we were able to replicate states to produce a Markov pro-
cess from a model where the transition probabilities changed on the second and subsequent
passes through a state. In this section, we develop an algorithm to handle a more general
case than that of section 3. Specifically, we allow arbitrary transitions to any state and an
arbitrary, but finite, number of passes through a state before the transitions become fixed.
Recall that in section 3, we allowed forward transitions to be only to the next state with no
skipping of states allowed.

The method for handling this case is derived from the recognition that transition through
a Markov process can be represented by a tree and that, associated with each new, or repli-
cated, state, we need to know how many times each of the other states has been visited.
The idea for constructing the states of a Markov process is best illustrated by an example:
Consider a process with four states, where s4 is the absorbing state. Suppose the transition
probabilities for the first pass through any state are given by the transition matrix in figure
3 and the transition probabilities for the second and subsequent passes are given by the
transition matrix in figure 4. Note that the actual probabilities don’t matter, so we have just
put an x in the matrix to represent a nonzero probability.

Since we need to keep track of the number of times each state has been entered, we
devised a notation to name the states of the Markov process with characters that contains
these counts. In the case of our example, we use a sequence of six integers for creating and

12

naming the states. For example, if a state is represented by

[2−0−1−0−1−0],

it has the following interpretation:

2 The number of the state in the original model
0 The number of times this state has been entered
1 The number of times state 1 has been entered
0 The number of times state 2 has been entered
1 The number of times state 3 has been entered
0 The number of times state 4 has been entered.

Since, in this example, there are only two distinct transition matrices, we only need to
know if we are in the first pass or in the subsequent passes. Thus, for our purposes, the
number of times a state is entered needs to be only 0 or 1.

Now we can can begin the process of generating a list all of the states that are possible
in the final Markov process. The first state in the list will be s1 in the first pass with all
other states having been entered zero times. This state is represented by

[1−0−0−0−0−0]

and the list contains just this state. We see from the transition matrix in figure 3 that we can
transition from s1 to s2 or s4. Thus we add the following states to the list:

[2−0−1−0−0−0]

[4−0−1−0−0−0].

Note that since we have now passed through s1, there is a 1 in the position corresponding
to the number of times s1 has been entered. We now have to process each new state on the
list, adding states to the list if they do not already appear. For the second state, we see that
we can transition to states s1 or s3. Thus the states that we add are

[1−1−1−1−0−0]

[3−0−1−1−0−0].

Observe that the first of these has a 1 in the second position, indicating that this is the second
pass through s1. Also, there is a 1 in the fourth position since s2 has now been entered. The
absorbing state, s4, is a special case and only has to be in the list once regardless of the
number of passes through any other state since, no transition out of s4 is allowed.

13

Continuing, we now add the states that can be reached from the two recently added
states. From figure 4 we see that from s1 in the second pass, we can transition to s2, s3, or
s4. We must take into account states already visited, so we consider that states

[2−1−1−1−0−0]

[3−0−1−1−0−0]

[4−0−1−1−0−0].

But now we see that the state [3 - 0 - 1 - 1 - 0 -0] is already in the list, so we don’t add it
again. We still have [3 - 0 - 1 - 1 - 0 -0] on the list and have not added the states that it can
transition to. These are states s2 in its second pass and the absorbing state. As above, we
only need to add

[2−1−1−1−1−0],

which is a new state. The only new state from here is

[1−1−1−1−1−0],

which we add. This state then generates the final state to be added,

[3−1−1−1−1−0].

Thus, the final list of states for our Markov process is

[1−0−0−0−0−0]

[2−0−1−0−0−0]

[1−1−1−1−0−0]

[3−0−1−1−0−0]

[4−0−1−0−0−0]

[2−1−1−1−0−0]

[2−1−1−1−1−0]

[1−1−1−1−1−0]

[3−1−1−1−1−0].

We now proceed to create the transition matrix, T , for this list of states. The entries are
easily determined from the list itself and from the transition probabilities in figures 3 and
4. From T we create F and solve for v, the expected number of visits to each state,

v = F−1w0, (4.3)

14

where w0 is a vector with a one in the first position and zeros elsewhere. Observe that this
is correct since the first state in our Markov process corresponds to the first state in the
original.

It is a simple matter to map v to the number of visits to each state in the original model.
To do this, let σi, i = 1, . . . ,NMP, where NMP is the total number of states in the Markov
process. Now, the expected number of visits to si in pass j is given by

ηi, j = ∑
k∈κ

vk (4.4)

where κ = {k : the first digit of σk is i and the second digit is j}. Thus the total time in
terms of the original problem is

T =
N
∑
i=1

2
∑
j=1

ηi, jτi, j, (4.5)

where τi, j is the time spent in state i during pass j. (Here we have used a two-pass system
to illustrate the approach.)

It is easy to see how this procedure can be generalized. There are already cases where
the forward transition is not just to the next state, e.g., from s1 we can go to s2 or s4. In
addition, if there are k passes before the transition probabilities stay fixed instead of two as
above, then the count for each state goes from 0 to k− 1. This procedure also has another
advantage over the algorithm in section 3, namely that it only creates states that can be
reached instead of creating the full N2 states. Finally, the algorithm for creating the list of
states is easy to code, due to the tree-like structure of the data.

5 Sensitivities

As noted in the introduction, it is of interest to use this model to gain a more complete
understanding of the process of design through analysis and to guide the investment of
funds to points in the process where the greatest reduction in time can be achieved. In
this section, we show how to compute the sensitivity (or derivative) of the total time with
respect to the the times associated with each state and, more importantly, with respect to
the transition probabilities.

The derivatives of the time with respect to the times spent in the original si can be
computed as follows from (4.5):

∂T
∂τi, j

= ηi, j.

15

This says that the sensitivity or derivative with respect to the time spent in si is simply the
expected number of visits to si in pass j.

The derivative with respect to a transition probability is more difficult to compute and
interpret. To derive this, we first show how to compute the derivative of the inverse of a
matrix with respect to a perturbation in the matrix. In particular, let A ∈ R N×N be a given
matrix and let P ∈ R N×N be a perturbation. We will discuss restrictions on P later. We
define

∂PA−1 = lim
ε→0

(A+ εP)−1−A−1

ε
.

We can write

(A+ εP)−1−A−1 = (A+ εP)−1 [A− (A+ εP)]A−1

= (A+ εP)−1 [−εP]A−1.

Thus

lim
ε→0

(A+ εP)−1−A−1

ε
= lim

ε→0

(A+ εP)−1(−εP)A−1

ε
= −A−1PA−1.

For technical reasons, we need to normalize the perturbation and the appropriate normal-
ization is the so-called Frobenius norm of P, which is defined to be the square root of the
sum of the squares of of all of the elements of P. This norm is denoted by ‖P‖F . Thus for
a normalized perturbation, we have

∂PA−1 = −
A−1PA−1

‖P‖F
. (5.6)

Note that this quantity is an (N ×N) matrix.

In our case, we have

A = F = (I −ST).

As above, we want to compute the derivative of the total time with respect to a perturbation
in the transition probability. Thus, using 4.5 we can derive the following:

∂T
∂P =

τTF−1PF−1w0
‖P‖F

, (5.7)

16

where w0 is the vector with a 1 in the first position and zeros elsewhere.

Although (5.7) is theoretically valid for any perturbation, some restrictions are nec-
essary in our case. In particular, changing just one transition probability will result in a
transition matrix that is no longer valid in that the row sum will no longer be 1. Thus to
maintain the row sums to be 1, the row sums of the perturbation P must be 0. It is not nec-
essary to restrict the perturbations so that the probabilities remain between 0 and 1 since
the normalization would obviate any such restrictions. The interpretation is that (5.7) gives
the instantaneous change of the time in the “direction” of the perturbation P.

In using (5.7) we will want to consider several, and possibly many, perturbations to
help in understanding and using the results of the model. It is interesting to note that
the calculation of these sensitivities can be done very efficiently. First, note that we have
already computed

η = F−1w0

and that we can compute, once and for all,

q =
(

FT

)−1
τ. (5.8)

Thus, for any perturbation P we only need to compute

qTPη.

It is not immediately obvious what perturbations to consider. After discussions with the
members of the DART analysis team, we decided that we should compute perturbations
with respect to the transitions corresponding to each original state separately. Since any
original state may be replicated several times in the derived Markov process, we create a
perturbation matrix P with perturbations in rows corresponding to that state. In particular,
we calculate the number of forward transitions and the number of backward transitions, n f
and nb respectively, and we put a 1/n f in any column corresponding to a transition to a
forward state and a −1/nb in any column corresponding to a transition to a backward state.
The rationale is that we are interested in changes that increase the probability of going on
and, correspondingly, decrease the chances of going back. Note that it is not clear a priori
what actions will create these changes.

6 Software

The software is described at the high level in [2]. Here we briefly describe the two Java
classes we wrote to do the basic analysis and the sensitivities.

17

The code is embedded in a package that collects the following data from an analyst.
Recall that the analysis is assumed to start in the first state and that there is a time required
and a set of transition probabilities for the first pass through the states and a different time
and set of transition probabilities for each subsequent pass. First, the analyst gives amount
of time spent in each state for the first pass through that state. Then he/she supplies the
percent of time required for subsequent passes through the state. Next, the analyst supplies
the two sets of transition probabilities. This data is made available to the analysis and
sensitivities classes.

The first class, Analysis2, creates Markov process from the data collected as described
above. The list of states required for the Markov process is built and then the transition
matrix is constructed as described in section 4. Next, the matrix F is constructed and
factored using the linear algebra routines in JLApack, [1]. Finally the system (4.3) is
solved using these factors.

The second class, Sensitivities, computes the sensitivities as described in section 5.
The system (5.8) is solved, also using the factorization of F . Then the perturbations are
computed and the sensitivities calculated.

18

References
[1] J. Dongarra. Jlapack download page. http://icl.cs.utk.edu/projects/f2j/download.html.

[2] Michael Hardwick, Robert Clay, Paul Boggs, Edward Walsh, Alex Larzelere, and Alan
Altshuler. Dart systems analysis. Technical report, Sandia National Laboratories, 2005.

[3] Edward P.C. Kao. An Introduction to Stochastic Processes. Duxbury Press, Belmont,
California, 1997.

19

DISTRIBUTION:
1 MS 9159

Mike Hardwick, 8964

1 MS 9159
Robert Clay, 8964

1 MS 9159
Edward Walsh, 8964

3 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 9616

1 MS 0612
Review & Approval Desk, 9612

20

